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J. Phys. A: Math. Gen., Vol. 12, No. 8, 1979. Printed in Great Britain 

Geometric properties of Dirac fields in a Riemannian 
space-time: I1 

C J Radford and A H Klotz 
Department of Applied Mathematics, University of Sydney, NSW 2006, Australia 

Received 30 October 1978 

Abstract. Our classification of Einstein-Dirac fields is extended to fields for which the 
principal spinors are independent of each other. It is shown that, when the Ricci scalar 
vanishes, the properties of the field are, to a large extent, determined by the twists of the two 
null congruences defined by the field. 

1. Introduction 

In the previous paper (Radford and Klotz 1979, hereafter referred to as I) we discussed 
the classification of Dirac-Einstein fields, that is solutions of Dirac equations in a 
Riemannian space in which Einstein's gravitational field equations are valid, and the 
structure of one class of such fields (type-I1 fields). We now propose to consider, in a 
similar way, Dirac fields of type I. The reader is referred to I for details of the 
classification itself, notational and mathematical preliminaries connected with the 
2-spinor and Newman-Penrose (NP) formalism which we employ again here, and the 
full bibliography of the subject. 

A type-I field occurs when the two Dirac spinors UA and UA are independent of each 
other (they are proportional for a type-I1 field). In this case, we can choose the spinor 
dyad oA, 1A in such a way that 

for some complex functions f and g of the coordinates. Thus we have 

Since the directions I" and n" of the NP tetrad are now fixed, the remaining tetrad 
freedom is one of boosts in the l"-n" plane and of rotations in the m"-fi" plane. With 
A and C#J as real functions, this freedom may be expressed as 
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In terms of the spinor dyad we can also write 
A 0 

A1/2 ,-i./2)(:.). (4) 

We can now write down the Dirac equations and the conserved current, energy- 
momentum and the sa  vector (which is analogous to the 'spin density' vector of a 
classical fluid with 'spin'). 

2. Dirac equations, conserved entities and integrability conditions 

With the choice (1) of the spinor directions, the Dirac equations, using the NP spin 
coefficients (see I for detailed definition), become 

Df = ( p  - e)f + ( i / h L ) g  (5a)  

Sf =(7-P)f ( 5 6 )  
and 

Similarly, the conserved vectors are 

j" =ffla +ggn" 

(that is, the necessarily real current density) and 
s' = -fgm" (7) 

(9) 

where 

A ( = 2 4 R ) = K ( f g + f g ) / 3 h L  

q500 = 2iK[gDg - gDg + (C - e)gg] 

4ol = 
40z = &20 = 2iK ( igg - uff) 

4 = 411 - 3A = iK[(P -p)ff+ (CL - p ) g d  

4 2 2 = 2 i K [ f A f - ~ A ~ + ( ~ - y ) f f I .  

= iK[gSg + (2+ - P)gg - ~ f f ]  

412'&21 =iK[fSf+(CE -2T)ff+Cgg] 

In obtaining these expressions we made use of the Dirac equations ( 5 ) .  

using the NP commutators. First, we apply the commutator 
As in the case of type-I1 fields, we obtain integrability conditions of the Dirac system 
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to f. Using the Dirac equations (5) and the three NP relations (Flaherty 1976) 

DP -SE = (a + r)o.+ ( p  - C ) P  - ( p  + Y ) K  - ( E  - F)E +$I 

DT-AK = (7 + +)p + (? + p ) a +  (E -C)T-(3y + Y ) K  +4i + 4 o i  (11) 

6p - 8C7 = p (E + P )  - U(3a - p) + ( p  - p ) T  + ( p  - @ ) K  - $1 + 401 
we readily obtain 

h(Kf)-b(crf) = - ( i / ~ L ) ~ g + f [ ~ ( 2 y + y - c Z ) + o . ( p - d - 2 ( ~ ) - $ 1 ] .  (12) 

Similarly, applying to g the commutator 

&A - h8= -VD + (? - -&A + (G - + ~ ) S + A S ,  (13) 

and using (Flaherty 1976) 

DV - A T  = p ( r  + ?) + (# + 7)h + ( y  - y ) ~  -(3€ +E)v $3 + 421 
SA -8p = (p  -p)V 4- ( p  -@)r + ((U +B)p + ( E  - 3P)A -$3  -t 4 2 1  

&Y -87 = ( p  +E)v-(T+@)A + (7 -@)(U + ( p - 7 ) ~  - 4 3 ,  

(14) 

we find 

S(Ag) - D(vg) = - ( i / d k ) r f + g [ v ( 2 ~  + C - p )  + A ( &  - 2P - F) - $31. (15) 

Here $1,$3  are two of the five tetrad components of the Weyl tensor (Flaherty 1976). 
These conditions must be satisfied by any solution f, g of the Dirac field equations (5). 

3. Vacuum space-time test solutions and subclassification of type4 fields 

Let us consider first the null directions 1" and nu, defined by a type-I field, to be geodesic 
and shear-free. These geometrical conditions are expressed by 

(16) K = ~ = A = v = O  

and then 

fGl = -(i/JzL)Tg (17) 

and 

gl/lj = - ( i f iL) r f :  (18) 
In a type-D vacuum space-time the above null directions coincide with the two geodesic 
and shear-free directions of the Weyl tensor. For test solutions on such space-time we 
now have the following theorem 

Theorem 1. The only type-D vacuum space-times which admit test Dirac fields of 
type I, in which each of the null directions defined by the Dirac field is geodesic and 
shear-free, are NUT and related space-times. 

We may note that this result is much more restrictive than the corresponding result 
for a field with zero rest mass. 

Let us now subdivide type-I fields as follows (as we have subdivided type-I1 fields in 
I). 
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Definition. A Dirac field of type I will be said to be 
(i) of type IG if 

A = fg +Ti  # 0 

and 
(ii) of type IT if 

A = O .  

Thus, for a IG field the trace of the energy-momentum tensor is not allowed to 
vanish, while it vanishes for a IT field. We have stated the Wainwright (1971) energy 
conditions for Dirac fields in I and we can now consider their geometrical implications 
for type-I fields. Actually, we shall only prove the results for IT fields, although similar 
conditions can be derived for IC fields also. It turns out that, in the latter case, the 
restrictions imposed on the field by the energy conditions are algebraically involved and 
lack any apparent geometric interpretation. 

For a type-IT field, the condition A = 0 implies that fg = -?& so that 

g = ihf (19) 

where h is a real, non-vanishing function. From the equations ( 5 )  we get 

and 

is the twist of the 1, congruence, while 

1 w, = si(@ - p )  

is the twist of the n, congruence. 

4. Type+ fields and the energy conditions 

It is clear from equation (21) that conditions which can be imposed on the energy- 
momentum tensor (Wainwright 1971; see also I) can be interpreted in terms of the twist 
of null congruences. We have the following theorem. 
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Theorem 2. For a Dirac field of type IT and energy class El at least one of the two 
null congruences defined by the field must have a non-zero twist; if both twists are 
non-zero, then 

W,@p 0 ,  

so that they are of opposite sign. 

Proof. Since the velocity of an arbitrary observer can be written as 

U, = p l ,  + qn, + sm, + M, (24 )  

(where pq -si = t so that u,ua = l ) ,  we have (in general) 

+p2[(1 +2sS)(4 + 6 A ) + 2 ~ 5 4  + ~ ~ 4 0 2 + 5 ~ 4 2 0 I  

+ p ( l  + 2SJ)(S412 + f 4 2 1 )  +$cl+ 2ss)2422}. 

For the field to be of class El we require E ( u ) # O ,  i.e. E(u)=O should admit only 
complex or zero solutions for p (for all s); in the present case (type-IT field) for an 
observer with s = 0, 

E(u)l,=o = - f f [ p 4 h 2 u ,  + p 2 3 ( ~ ,  -w,h2) -bw , ] /p2 .  (25')  

Clearly, at least one of w, or w, must be non-zero (otherwise, E ( u )  = 0 for all observers 
with s = 0); if wp # 0 # w,, then the solution of E ( U ) ~ , = ~  = 0 are 

2 
P = t ( w , / W p ) ,  - t ( f f l g e )  

and give only complex solutions for p ,  provided w,w, < 0. 

Theorem 3. If the twist of one of the congruences vanishes (say, wp = 0, w, # 0), 
then the field IT is of class El if and only if there exists a null tetrad in which the 
energy-momentum tensor takes the form 

T,s = f f [ o , f , f B  +ih2wr(4f(,nsj  - gas) +$(e - hh2)m,ms +$(Ah2 -C )?%f i~  

- ~ ( . r + . r r - v h 2 - - / h 2 ) f ( , m s j + ~ ( 7 + t r -  Ph2-R/h2)f~,*sjl  (27) 

with the twist restricted by 

where 

b = q512/4K = lbl eir 

a = 4 0 2 / 4 ~  = /a 1 ei' 

s = Is1 eie 

w, = Eb,I E = f l .  
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Proof. When U, = A = 0, we have (from equation (25)) 

4Kp2E(u) = 2p3(s~01+f410)+p2[(1  +4s i )4  +s2402+52420] 

Thus €(U) = 0 is a cubic which will have no real roots (coefficient of p 3  = 0) if and only if 
4ol = 0 and 

+ p ( l +  2sf)(s412 +F421)  +i(l+ 2sF)2422. 

(s412 + W 2 d 2  < 422[(1+4sfMJ + s 2 4 0 2  + f24201 

for all s. The first condition, c # J ~ ~  = 0, gives the required form of the energy-momentum 
tensor (using equation (21)) and, as [ S I  can be made arbitrarily large, the second 
condition becomes (upon making the appropriate substitutions) 

2 2 2  21b/2cos2(8+5)-(ff) h w,-fflalo, c o s ( 2 8 + $ ) ~ 0 .  

Choosing 8 to maximise the left-hand side of this expression then gives (28), completing 
the proof. 

Finally, we recall (see I) that to satisfy the strong energy condition the field must be 
of class E2 and satisfy €(u)>O. Using (25') we immediately deduce the following 
theorem. 

Theorem 4. For a Dirac field of type IT satisfying the strong energy condition, the 
twist of 1, congruence (tangent to u A L ~ A )  must be non-positive and that of n, congruence 
(tangent to vAOA) non-negative, with at least one of the twists non-zero. 

Thus, one of the three cases 
(i) up = 0, U, > 0, 

(ii) o, = 0, up < 0 and 
(iii) up < 0, U,  > 0 

must hold. 

5. Conclusions 

The usefulness of the results obtained in this paper and in I depends, of course, on the 
existence of solutions of the Einstein-Dirac system of field equations. Although many 
test solutions are known, this is not always the case if we seek exact solutions of the 
coupled equations. For example, there does not appear to be a spherically symmetric, 
static solution (with static current vector, j " ) .  This will be shown elsewhere with some 
examples of cases when complete solutions do exist. We may observe that the theorems 
proved for a test Dirac field are more restrictive than the corresponding result for 
zero-rest-mass fields. Thus, with reference to theorem 1, all type-D vacuum space- 
times admit test solutions of the source-free Maxwell equations in which the two 
principal null directions of the field tensor are geodesic and shear-free. It is interesting 
to note also the important role played by the twist in the type-I, case, the main case 
discussed in this article. 

Theorem 4 itself is rather reminiscent of the conditions on the helicity for positive 
and negative energy solutions of the zero-rest-mass field equations in flat space-time 
(see Penrose 1975). For the other type-I fields (type IG) the restrictions, imposed by the 
energy conditions, become algebraically very involved and seem to lack any immediate 
geometrical interpretation, and for this reason are not discussed in the present paper. 
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